Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This study details the enhancement of CO2 selectivity in ring opening metathesis polymerization (ROMP) polymers that contain nitrile moieties and micro-pore generating ladder side chains. A material, CN-ROMP homopolymer, with nitriles in the ladder side chains was originally targeted and synthesized, however its low molecular weight and backbone rigidity precluded film formation. As a result, an alternative method was pursued wherein copolymers were synthesized using norbornene (N) and nitrile norbornene (NN). Herein, we report an investigation of the structure–property relationships of backbone functionalization and grafting density on the CO2 transport properties in these ROMP polymers. Nitrile-containing copolymers showed an increase in CO2/CH4 sorption selectivity and a concomitant increase in CO2/CH4 permselectivity when compared to the unfunctionalized (nitrile free) analogs. The stability in CO2 rich environments is enhanced as grafting density of the rigid, pore-generating side chains increases and an apparent tunability of CO2 plasticization pressure was observed as a function of norbornene content. Lower loadings of norbornene resulted in higher plasticization pressure points. Gas permeability in the ROMP copolymers was found to correlate most strongly with the concentration of ladder macromonomers in the polymer chain.more » « less
- 
            Graphene oxide/polymer composite water filtration membranes were developed via coalescence of graphene oxide (GO) stabilized Pickering emulsions around a porosity-generating polymer. Triptycene poly(ether ether sulfone)-CH2NH2:HCl polymer interacts with the GO at the water−oil interface, resulting in stable Pickering emulsions. When they are deposited and dried on polytetrafluoroethylene substrate, the emulsions fuse to form a continuous GO/polymer composite membrane. X-ray diffraction and scanning electron microscopy demonstrate that the intersheet spacing and thickness of the membranes increased with increasing polymer concentration, confirming the polymer as the spacer between the GO sheets. The water filtration capability of the composite membranes was tested by removing Rose Bengal from water, mimicking separations of weak black liquor waste. The composite membrane achieved 65% rejection and 2500 g m−2 h−1 bar−1. With high polymer and GO loading, composite membranes give superior rejection and permeance performance when compared with a GO membrane. This methodology for fabrication membranes via GO/polymer Pickering emulsions produces membranes with a homogeneous morphology and robust chemical separation strength.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
